Reuse end-of-life of RO membranes in wastewater treatment for agriculture and industrial fields

Almoatasem Alaufi
PhD researcher, IWRI
Study background

Unfair balance of available freshwater

Middle east and north Africa facing a high level of water stress

Seawater desalination is the most attractive option for providing potable water

Reverse Osmosis (RO) consider as the best separation method according to different majority

By 2025, expected more than 20 million old RO element
Study background

- There are about 65% of desalination plants using RO technology with different plant sizes.
- The life-time of RO membrane from 5-7 years and might be depending on the raw water.
- Replacing the RO membrane can be for many reasons, common factor is mechanical or chemical defect, fouling, and increasing the salt passage.
- Now a day, around 840,000 of old-RO elements discarded at the land field annually.

Linear and circular economy paths for the EoL RO module.
Goals

- To reduce the cost of wastewater reuse by using those end-of-life RO membranes
- To recycle them from the desalination plants and give them a second life chance
- To provide desalination plants operators a solution for their membranes waste disposal
- To treat wastewater using old RO used membranes
- To provide an additional water supply option for irrigation of sensitive crops
- To protect groundwater by treating wastewater before injecting it
Challenges

1. Clean
2. Make it wet
3. Covered by plastic bag
4. A way from sunlight

Follow the right protocol to save the element after service

Grantee that no mechanical defect

Make sure that POLYAMIDE (PA) is totally oxide

Avoiding all kind of unwanted substances (fouling and scaling)
Reverse Osmosis membrane

- The outer design of membrane separation elements is like each other, with differences in the number of layers and the pour size.

- The RO membrane consists of three layers to reject the salt substances, while ultrafiltration consists of two layers to remove some unwanted substances like viruses.

- There are two options for reuse old RO elements:
 - **Option-1**: Used directly to treat low water salinity.
 - **Option-2**: Used indirectly by transforming it to UF or NF.
Work Methodology (part 1)

- Test the performance before and after transformation.
- Re-check cleaning.
- Stored old RO membranes.
- Pilot plant (prototype).
- Lab water characterization.
- Lab analysis.

- Waste Water Treatment Unit using PWW module.
- Lab water characterization.
- TSS, TOC, COD, Flux, Turbidity, PH.
Results

Integrity test

- Stored 30 old RO elements from two different site:

Site-1 (15 elements) Not-follow the storing protocol 50% can be used directly

Site-2 (15 elements) Following the storing protocol 85% can be used directly
Results

Permeability test

- Taking 20*20 cm sheet samples from different old RO elements
- Examine the rejection of old elements from different positions (feed, medium, and reject sides)
Results

Transformation process

✓ Using sodium hypochlorite (NaOCl) with a concentration of 15%

✓ The process starts with a concentration of 370 ppm. hr

\[
\text{dose intensity (ppm.hr) = concentration of free chlorine (ppm) } \times \text{ contact time the salt}
\]

✓ passing membrane almost by 99%

✓ Average turbidity rejection achieves 71.5%
Results

Scanning electron microscopy

Top view of the surface of old RO membrane before transformation

Top view of the surface of old RO membrane after transformation
Conclusion and remarks

✓ The transformation process of the EoL RO membrane to UF properties was done successfully at both lab and pilot scale at DI of 300,000 ppm.hr

✓ The surface characteristics of the EoL RO membrane were changed after the transformation that was indicated by complete removal of the PA layer and the increase in the hydrophilicity (more wetting) of the membrane surface and decrease in salts rejection

✓ Lower operating pressure caused lower fouling and corresponded to the longest filtration cycle and highest permeability
Future perspective and recommendation

Desalination industry

- Measuring the EoL RO module weight and conducting the integrity monitoring test before the transformation

- Storing those modules when reaching the EoL stage to avoid drying resulted in a damage of the membrane sheets

Future studies and research

- Conducting economic analysis for the transformation process of the EoL RO module to UF properties
- Examine three different configuration (as it is, semi-open, and flat-sheet), then record the results for future work
Figure from the project
Acknowledgment

Proof. Jauad El.kharaaz
Proof. Geetha Devidi
Eng. Riadh Dridi

Project manager
Assistant professor
Head of training

RCREEE / MEDRC
NU
MEDRC
Thank you