IWRA’s XVII WORLD WATER CONGRESS

29 November – 3 December 2021
EXCO, Daegu, Republic of Korea
The Control of Pathogens in Stored Rainwater using Direct Electrochemical Activation

Dr Gillian Clayton, Dr Bethany Fox, Dr Mark Steer, Dr Robin Thorn & Professor Darren Reynolds

University of the West of England, Bristol, UK
• Almost 2 billion people worldwide do not have access to safely managed drinking water services\(^1\)

• In 2019, 0.8 million people died as a result of diarrhoeal diseases, contracted from the consumption of biologically contaminated water\(^2\)

• Rainwater harvesting systems enable off-grid, or remote, communities to store freshwater throughout dry periods

\(^1\) WHO & UNICEF. Progress on drinking water, sanitation and hygiene in households 2000-2020: Five years into the SDGs. (2021);

\(^2\) World Health Organization. Water, sanitation, hygiene and Health A Primer For Health Professionals. (2019)
Electrochemical Activation [ECA]

Water + ions + energy =ECA

ECA damages and ruptures bacterial membranes through oxidation reactions

Rapid antimicrobial kinetics:
• 2 – 10 seconds

Applications in:
• Food processing
• Healthcare settings
• Drinking water disinfection

Study Aim: To control potential waterborne pathogens using small-scale direct electrochemical activation.
Methods

Guttering

ECA TREATMENT TANK
CONTROL TANK

100L Tanks

Rainwater Overflow Pipework

Sample tap

UWE, Bristol

Map Data©2021 Google
Methods

Total electrochemical activation [ECA] time: 4 hours
• Tanks were then left covered with no activation for a further 20 and 44 hours (48 hours total).

Physicochemical parameters monitored every 30 minutes
• Conductivity and oxidation reduction potential [ORP]

Biological parameters monitored every 30 minutes
• Heterotrophic bacteria (HPC) and total coliforms
Physicochemical parameter results

Oxidation Reduction Potential

- **Activation Period**
- **Control ORP**
- **ECA ORP**

Conductivity

- **Activation Period**
- **Control Conductivity**
- **ECA Conductivity**
Biological results

Heterotrophic Bacteria (HPCs)

Activation Period

Total Coliforms

Activation Period

Heterotrophic Bacteria (HPCs)

- Control HPC
- ECA HPC

Total Coliforms

- Control Coliforms
- ECA Coliforms
Conclusions

• Stored rainwater can have a relative high biological loading

• The bacteria present in the control tank remained stable through the 48 hour trials

• After 30 mins, there were no recoverable coliforms in the ECA rainwater tank, and there was a significant reduction in HPCs (p<0.0001)

• ORP did not have an effect on the antimicrobial efficacy of direct ECA of rainwater.

• Biologically safe water was maintained throughout the 44-hour period of non-ECA
Acknowledgements

UWE Bristol
Professor Darren Reynolds
Dr Robin Thorn
Dr Mark Steer
Dr Bethany Fox

University of Antananarivo
Dr Jean Freddy Ravaivoarisoa

Sadabe, Madagascar
Mr Jean Luc Raharison

Technology Partner
Mr Robin Turner (Centrego Ltd)

Funding
UK-Africa Global Challenges Research Fund Agri-tech Catalyst Seeding Award
Natural Environment Research Council, UK [NE/R003106/1].