Historical development of water footprint of crops & blue water scarcity in the Yellow River Basin

La Zhuo1 Mesfin M. Mekonnen1 Arjen Y. Hoekstra1 Yoshihide Wada2

1Twente Water Center, University of Twente, the Netherlands
2Department of Physical Geography, Utrecht University, the Netherlands
1. Introduction: Yellow River Basin: a water scarce ‘Mother river’ basin

Currently:
• 2% national water resources v.s. 13% national crop production
• Annual water withdrawal ~ 77% renewable water resources.

During past half century:
• Irrigated area increased 1.5 times
• Blue water consumption increased 2 times

Location of Yellow River Basin
1. Introduction: Why water footprint?

Lack of good data on long-term variability of water use & water scarcity for the Yellow River Basin.

A multi-dimensional indicator of consumptive water use of both rainfall (green) and ground-surface (blue) water and the (grey) water required to assimilate anthropogenic loads of pollutants to freshwater bodies (Hoekstra et al, 2011).
1. Introduction: Study objectives

To assess for the Yellow River Basin:

5 by 5 arc-min (~7km × 9km)
17 crops (93% production)
2 Method: Study flow

Crop Water footprint

- Green water footprint
- Blue water footprint
- Grey water footprint

Blue water footprint (Industrial+domestic)

Natural runoff

INPUTS

AquaCrop

Hoekstra et al. (2011)
Franke et al. (2014)

Blue water scarcity

YRCC

Van Beek et al. (2011)
Wada et al. (2011)

PCR-GLOBWB

Blue water footprint

\[
\text{Blue water footprint} = \frac{\sum \text{blue ET}}{\text{Yield}}
\]

Green water footprint

\[
\text{Green water footprint} = \frac{\sum \text{green ET}}{\text{Yield}}
\]

Grey water footprint

\[
\text{Grey water footprint} = \frac{\text{Leaching nutrient}}{\text{Critical concentration}} \times \frac{1}{\text{Yield}}
\]

Hoekstra et al. (2011); Franke et al. (2013)
2. Method : Assessing blue water scarcity

Blue water scarcity = \frac{\text{Blue water footprint}}{\text{Max. sustainable blue water footprint}}

Max. sustainable blue water footprint = \text{Natural runoff} - \text{Environmental flow requirement}

<table>
<thead>
<tr>
<th>Blue water scarcity level</th>
<th>Low</th>
<th>Moderate</th>
<th>Significant</th>
<th>Severe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue water scarcity</td>
<td><1</td>
<td>1 – 1.5</td>
<td>1.5 – 2</td>
<td>> 2</td>
</tr>
</tbody>
</table>

Hoekstra et al. (2011, 2012)
3. Results: Water footprint of crop production in the Yellow River basin (1961-2009)

- 14% increase in decadal average green WF
- 37% increase in decadal average blue WF
- 24-folds in annual grey WF related to nitrogen
- 36-folds in annual grey WF related to phosphorus
3. Results: Water footprint per tonne of crop in the Yellow River basin (1961-2009)
3. Results: Monthly blue water scarcity (1978-2009)

- Annual blue water footprint = 19~52% Natural runoff
- Peak of monthly blue water footprint: May - July
- More natural runoff => Less blue WF
4. Conclusion

- The total water footprint of crop production in the Yellow River Basin increased for 1961-2009.
- The green-blue water footprint per tonne of crop reduced.
- The Yellow River Basin suffered moderate to severe blue water scarcity for 7 months a year (Jan-July).
- More than half of the basin faced severe blue water scarcity, even in the wettest month in a wet year.
Thank you very much!

Email: l.zhao@utwente.nl
Group Water Management, University of Twente